В настоящей работе рассматриваются клинические и генетические аспекты патогенеза преждевременного истощения яичников (ПИЯ). В группах пациенток с ПИЯ и доноров яйцеклеток с использованием методов ДНК-анализа проведено исследование мутации 769G->A гена INHα1 и аллельного полиморфизма области СGG-повторов в гене FMR1.
Полученные данные стали новым доказательством вовлечения генов FMR1 и INHα1 в регуляцию функционального резерва яичников. В результате исследования сделан вывод о необходимости проведения тестирования мутаций генов INHα1 и FMR1 у молодых женщин с целью раннего выявления риска развития ПИЯ и планирования рождения ребенка. Такая программа генетического тестирования может быть важной для выбора стратегии стимуляции овуляции у пациенток с бесплодием, которые проходят лечение методом экстракорпорального оплодотворения, а также для доноров яйцеклеток.
Яичник – уникальный орган женщины, функционирование которого прекращается задолго до конца ее жизни. Именно в тот период, когда количество фолликулов в яичнике достигает определенной критической величины (от 100 до 1000), прекращается их созревание и наступает физиологическая менопауза. Средний возраст женщин, когда они достигают менопаузы, в норме около 50 лет, почти у 1% женщин – к 60-и годам и у 1-2% – до 40 лет [1, 2]. Раннее наступление менархе или выключение функции яичников формируют симптомокомплексы, при которых в патологический процесс вовлекаются не только органы репродукции, но и системы, чутко реагирующие на изменение уровней половых гормонов. В настоящее время все эстроген-дефицитные состояния, при которых уровень Е2 в крови составляет 80 пмоль/л и менее, в зависимости от поражений репродуктивной системы подразделяют на нарушения центрального и яичникового генеза. Именно о последнем образно выразился Н. Wollett: «Преждевременная менопауза выбивает женщину из марафонского забега задолго до ожидаемого финиша» [3].
Cимптомокомплексы, формирующиеся у женщин моложе 40 лет и проявляющиеся вторичной аменореей, признаками выраженной гипоэстрогении и бесплодием на фоне повышенного уровня гонадотропинов – ФСГ (фолликулостимулирующий гормон), ЛГ (лютеонизирующий гормон), принято называть преждевременным истощением яичников. Иногда в литературе используют иные термины: «преждевременная недостаточность яичников» (ПНЯ), «преждевременное выключение функции яичников» (ПВФЯ), «преждевременная менопауза» (ПМ).
На основании проведенных исследований ПИЯ относили к необратимым состояниям. В 1969 г. G. Jones и М. de Morales-Ruehsen описали троих пациенток с вторичной аменореей, бесплодием, высоким уровнем гонадотропинов и сохраненным фолликулярным аппаратом, у которых крайне редко возникали самостоятельные менструации [4]. Подобное состояние было охарактеризовано, как синдром резистентных яичников, или Савадж-синдром – по имени одной из пациенток [5]. Для этой клинической ситуации C. О’Herlity и соавт. предложили термин «скрытая форма ПИЯ» [6].
Современные исследователи полагают, что ПИЯ может развиться вследствие снижения фолликулярного пула, которое обусловлено нарушениями фолликулогенеза и ускорением процесса апоптоза и атрезии фолликулов. ПИЯ становится большой проблемой для семейных пар, если женщина откладывает создание семьи на поздний период, когда у нее уже развилось бесплодие. Кроме того, у женщин с ПИЯ возникают патологические процессы, которые в молодом возрасте связаны с гипоэстрогенией, что является фактором риска развития остеопороза и коронарной сердечной недостаточности [7]. Анализ становления менструальной функции, продолжительности менструального цикла у пациенток с ПИЯ не выявил каких-либо особенностей, которые в пубертатном и юношеском возрасте могли бы настораживать в отношении повышенного риска развития в дальнейшем преждевременного снижения функции яичников. Наиболее частыми причинами, которые приводят к формированию яичниковой недостаточности, считают стрессовые ситуации. По мнению A. Vermeulen, хронический стресс относится к ведущим повреждающим факторам, воздействующим на эндокринные железы [8]. Индивидуальное восприятие повышенных физических и психических нагрузок может изменять регуляторную функцию иммунной системы и через повышение уровня кортикостероидных гормонов оказывать влияние на гипоталамо-гипофизарно-яичниковую ось. Преждевременное выключение функции яичников с исходом в гипергонадотропный гипогонадизм, в конечном итоге, приводит к изменению функционирования гипоталамической и лимбической систем и секреции нейрогормонов. В результате этого снижается активность допаминергических и повышается активность норадренергических структур, вследствие чего снижается уровень эндорфинов, серотонина, допамина, изменяется терморегуляция, появляются приливы, гипергидроз, развиваются гипертензия и ожирение.
Установлено, что химио- или радиотерапия резко уменьшают число фолликул и могут вызывать ПИЯ. Несмотря на то, что аутоиммунные заболевания отмечаются у 10-20% женщин с ПИЯ, роль аутоиммунных процессов, некоторых инфекций в развитии патологии остается не до конца изученной [7]. Другими факторами развития ПИЯ могут быть такое заболевание, как галактозимия, недостаток отдельных ферментов и нарушение сигнальной системы гонадотропина [9].
Установлено, что ПИЯ имеет наследственную природу, этому способствует существование наследственных генетических дефектов. Число женщин с ПИЯ и женщин, которые имеют семейный анамнез, в разных исследованиях существенно отличается (от 5 до 37,5%), что можно объяснить неоднородностью популяционных групп пациенток с ПИЯ [10]. Известно, что ПИЯ может наследоваться как по отцовской, так и по материнской линии, по аутосомально-рецессивному и Х-сцепленному типу наследования с неполной пенетрантностью [11-14].
У женщин с ПИЯ описаны и хромосомные абберации, которые, в основном, наблюдали на Х-хромосоме, эти нарушения могут приводить к полной делеции или частично нарушать отдельные гены, важные для репродукции, а также процесс инактивации Х-хромосомы либо опосредованно воздействовать на спаривание хромосом во время мейоза.
Предполагается, что генами-кандидатами, локализованными на Х-хромосоме, нарушение которых и обусловливает ПИЯ, являются гены POF1, POF2 и FMR1, а местом локализации других генов-кандидатов ПИЯ считается 3-я хромосома (регион 3q22-3q23) [14]. Возможными генами-кандидатами патогенеза ПИЯ считаются гены семейства ингибинов. Таким образом, генетическая природа ПИЯ определяется мутациями в различных генах, которые приводят к подобным фенотипическим признакам. Вот почему важно выяснить роль конкретного генетического фактора при обследовании отдельного пациента.
Как мы уже отмечали, одним из генов-кандидатов, детерминирующим развитие ПИЯ, является ген FMR1, изучение его изначально было связано с синдромом ломкой Х-хромосомы (синдром Мартина-Белла). Данная наследственная патология – наиболее распространенная после синдрома Дауна и генетически обусловленная форма умственной отсталости, частота которой составляет 1 на 1500 новорожденных мальчиков и 1 на 2500 девочек [15, 16]. Задержка развития психомоторных функций и умственная отсталость – наиболее важные клинические признаки синдрома ломкой Х-хромосомы. Развитие данной патологии связано с так называемой динамической мутацией – гиперэкспансией тринуклеотидных CGG-повторов, локализованных в 5’ нетранслируемой области гена FMR1 (fragile X mental retardation) [17, 18].
Когда количество копий повторов превышает 200, происходит гиперметилирование последовательности ДНК ближайшего СpG-островка. Считается, что именно это приводит к выключению транскрипционной активности гена и остановке синтеза соответствующего белка FMRP (fragile X mental retardation protein) [18,19], данный белок является РНК-связывающим [20]. Важно отметить, что РНК-связывающие белки играют большую роль в клеточных процессах как в ядре, так и в цитоплазме, регулируют посттранскрипционную экспрессию генов, инициируя регуляцию сплайсинга про-мРНК, поддерживают стабильность мРНК, влияют на эффективность трансляции, а возможно, и регулируют транспорт РНК между ядром и цитоплазмой [21]. Некоторые РНК-связывающие белки могут функционировать как ДНК-связывающие и регулировать транскрипцию специфических генов. При изучении пациентов с синдромом ломкой Х-хромосомы было обнаружено, что белок FMRP играет важную роль в пролиферации половых клеток, о чем свидетельствует высокий уровень его экспрессии в сперматогониях. С другой стороны, среди родственниц пациенток с синдромом Мартина-Белла были выявлены специфические фенотипы, не характерные для данного заболевания, в частности ПИЯ и другие нарушения функции яичников. Следует отметить, что в области CGG-повторов гена FMR1 возникают так называемые динамические мутации. Суть этого явления заключается в том, что у потомков конкретного индивида в поколении может меняться количество копий CGG-повторов. У матерей и сестер, больных синдромом Мартина-Белла, определяют премутацию, которая варьирует от 50 до 199 повторов. Полная же мутация, как отмечалось выше, составляет 200 и более повторов, наименьший размер аллеля, который в следующем поколении может превратиться в полную мутацию, – не менее 59 CGG-повторов [22]. Cуществуют так называемые промежуточные аллели, которые потенциально нестабильны в процессе наследования, минимальный размер таких аллелей риска варьирует от 39 до 41 CGG-повтора.
В ходе недавно проведенных исследований были получены данные о том, что приблизительно у 20% женщин-носительниц премутации выявляют ПИЯ. Интересно отметить, что по результатам этих исследований женщины-носительницы полной мутации имеют одинаковый риск развития ПИЯ (1%) с женщинами, не имеющими премутации. Также было установлено, что даже те носители премутации, у которых цикл не нарушается, имеют более высокий уровень ФСГ по сравнению с носителями полной мутации или неносителями премутации [23, 24]. Кроме того, выявлена связь между развитием ПИЯ и происхождением премутантного аллеля от одного из родителей. Так, установлено, что большинство женщин-носительниц премутации в гене FMR1, у которых развивалось ПИЯ, унаследовали мутантный аллель от отца и лишь в редких случаях – от матери [25]. В широкомасштабном исследовании подтверждена статистически достоверная ассоциация между увеличением размера области CGG-повторов гена FMR1 и развитием нарушения функции яичников [26]. Исходя из полученных данных по исследованию ассоциации между мутантными вариантами гена FMR1 и недостаточностью функции яичников, можно сделать вывод о том, что экспрессия белка FMRP играет существенную роль в формировании физиологического резерва яичников, а тестирование CGG-области гена FMR1 у пациенток с ПИЯ и другими формами патологии яичников важно как с точки зрения выяснения тонких молекулярно-генетических механизмов патологического процесса, так и для ранней диагностики заболевания у пациенток с высоким риском развития ПИЯ.
Другим потенциальным «кандидатом», влияющим на развитие наследственных форм ПИЯ, является ген ингибина. Ингибин и активин – мультифакторные гормоны, входящие в семейство белков факторов роста , они ингибируют и стимулируют синтез и секрецию ФСГ [ 26-32].
Синтез трех субъединиц ингибина (α, βA и βB) происходит только в гранулярных клетках яичника на ранних стадиях формирования фолликулов [33]. У женщин основная функция ингибина – регуляция секреции ФСГ – снижение концентрации ингибина в сыворотке крови отмечается при уменьшении резерва фолликулов в яичнике [34]. C другой стороны, повышение концентрации ФСГ совпадает со степенью фолликулярного истощения при переходе к менопаузе [35]. Именно поэтому нарушения (мутации) гена INHα1, которые обусловливают уменьшение уровня биоактивного ингибина и, в свою очередь, повышают концентрацию ФСГ по принципу негативной регуляции, приводят к первичному истощению фолликулов и в результате – к ПИЯ.
Миссенс – мутация 769G->A (замена во 2-м экзоне гена) – встречается примерно у 7% пациенток с ПИЯ, развивается в очень раннем возрасте [36]. Предполагается, что эта мутация нарушает связывание ингибина и с рецептором и, таким образом, ослабляет активацию ингибина и нарушает регуляцию синтеза ФСГ.
Наши исследования были посвящены изучению роли мутации 769G->A гена INHα1 и количества СGG-копий гена FMR1 в регуляции физиологического резерва яичников. Для анализа мутации 769G->A гена INHa1 мы разработали метод, основанный на рестрикционном анализе продукта полимеразной цепной реакции (ПЦР) 2-го экзона с использованием эндонуклеазы рестрикции BstV1I. В случае мутации на одной из хромосом 2 исчезает один из сайтов узнавания BstV1I, поэтому у гетерозигот на электрофореграмме наблюдаются рестрикционные фрагменты длиной 25, 85, 134 и 159 п.н.
При отсутствии мутации (дикий тип) после рестрикционного анализа мы наблюдали фрагменты 85, 25 и 134 п.н., в случае мутации 769G->A в гомозиготном состоянии – фрагменты длиной 85 и 159 п.н. (рис.1).
Мутация 769G->A в гене INHα1 выявлена у 4,4% женщин-доноров яйцеклеток (n = 183) и у 7,5% женщин с клиническим диагнозом ПИЯ (n = 53). Таким образом, данная мутация чаще отмечалась у индивидов с ПИЯ, чем в общей популяции женщин. У доноров яйцеклеток с данной мутацией количество ооцитов, полученных после стимуляции, было статистически достоверно меньше (5,0 ± 1,3), чем у доноров без мутации (10,9 ± 2,8).
Для идентификации количества СGG-повторов в гене FMR1 Cy-5 меченые продукты ПЦР анализировали на автоматическом лазерном флуориметре ALF-express (рис. 2).
В результате проведенного исследования среди 477 женщин-доноров яйцеклеток выявлено 4,8% носителей аллелей высокого риска (≥ 40 СGG-повторов), у доноров с аллелями высокого риска или премутацией на втором цикле стимуляции овуляции необходимая доза гонадотропина была существенно выше, чем у доноров без премутации.
Данные, полученные нами в группе доноров яйцеклеток, которым проводили стимуляцию овуляции с использованием гонадотропина, а также у пациенток с ПИЯ, – новое доказательство вовлечения генов FMR1 и INHα1 в регуляцию функционального резерва яичников. Эти данные – также веский довод в пользу проведения тестирования мутаций генов INHα1 и FMR1 у молодых женщин с целью раннего выявления риска развития ПИЯ и планирования рождения ребенка. Программа генетического тестирования важна для выбора стратегии стимуляции овуляции у пациенток с бесплодием, которые проходят лечение методом экстракорпорального оплодотворения, а также для доноров яйцеклеток.