Прошли те времена, когда применение статистических методов в медицине и биологии ставилось под сомнение. Статистические подходы лежат в основе современного научного поиска, без которого познание во многих областях науки и техники невозможно. Невозможно
Прошли те времена, когда применение статистических методов в медицине и биологии ставилось под сомнение. Статистические подходы лежат в основе современного научного поиска, без которого познание во многих областях науки и техники невозможно. Невозможно оно и в области медицины.
Одним из ревностных сторонников применения статистических методов в медицине был основатель военно-полевой хирургии Н. И. Пирогов. В 1849 г., говоря об успехах отечественной хирургии, он отмечал, что «…приложение статистики для определения диагностической важности симптомов и достоинства операций можно … рассматривать как важное приобретение новейшей хирургии». Кроме того, в учебнике по основам военно-полевой хирургии он писал: «Я принадлежу к ревностным сторонникам рациональной статистики и верю, что приложение ее к военной хирургии есть несомненный прогресс». Активным сторонником использования статистических методов в медицине был известный российский терапевт, организатор земской медицины В. А. Манассеин. В клинических лекциях он не противопоставлял статистику клиническому наблюдению, а наоборот, акцентировал внимание на их взаимную дополняемость: «Для проверки в клинике имеются два пути, отнюдь не исключающие друг друга и одинаково важные. Я разумею путь статистического доказательства, с одной стороны, и точное клиническое наблюдение каждого отдельного случая — с другой».
Одним из первых примеров применения математического анализа в медико-биологических исследованиях в Европе и России была диссертационная работа П. Д. Енько «Опыт приложения анализа к вопросу о ревакцинации», которую он защитил в Военно-медицинской академии (Санкт-Петербург) в 1873 г. С критическим анализом данной диссертационной работы выступил в Военно-медицинском журнале (1874 г.) М. Зенец. В частности, он писал: «Медицина есть именно одна из тех областей человеческого ведения, в которой можно ожидать от приложения статистико-математического метода самых плодотворных результатов». Отдельный интерес представляет и само название статьи — «Как не должно собирать медицинские статистические данные и как не должно ими распоряжаться, чтобы вместо результатов истинных не получать ложных».
Вначале применение статистических методов в медицине в Западной Европе встречало сопротивление. Так, известный математик К. Пирсон писал, что он в 1900 г. послал в Королевское общество (в Лондоне) для публикации одну из своих статей, в которой применил статистические методы, на что получил ответ, в котором указывалось на нежелательность того, чтобы в статьях по биологии содержался какой-либо математический аппарат. В знак протеста Пирсон даже хотел выйти из этого научного общества, однако другой известный ученый Ф. Гальтон убедил его этого не делать. Но развитие применения статистических методов в медицине и биологии остановить не удалось, и в 1901 г. Пирсон основал журнал «Биометрика», который издается до настоящего времени, его интернет-версия находится по адресу http://www.oup.co.uk/biomet/.
Так что же такое статистика, о применении которой в медицине начали говорить еще в середине XIX столетия и которая по настоящее время остается мощным инструментом для получения научно обоснованной информации в различных областях науки и техники? Известный советский и российский ученый В. В. Налимов в книге «Вероятностная модель языка. О соотношении естественных и искусственных языков» приводит более 150 определений термина «статистика». Авторам этой публикации более всего импонирует определение статистики, которое дал А. Вальд, основоположник последовательного анализа, разработанного им во время Второй мировой войны и засекреченного до ее окончания, так как этот метод позволял значительно экономить средства при контроле качества продукции в промышленном производстве. В своих трудах Вальд писал, что «…статистика — это совокупность методов, которые дают нам возможность принимать оптимальные решения в условиях неопределенности».
Чем же чреват отказ от применения статистических методов при проведении медицинских исследований? Во-первых, неправильно проведенное исследование является неэтичным в силу следующих причин:
Во-вторых, немаловажными факторами, побуждающими отечественных ученых к надлежащему применению статистических методов в медико-биологических исследованиях, являются глобализация и стремление выйти на внешний рынок, развитие грантовой системы финансирования науки, а также углубление международного сотрудничества.
В последнее время бурно развивается концепция медицины, основанная на доказательствах. В мире все больше появляется центров доказательной медицины. Концепция медицины, основанной на доказательствах, была одним из лейтмотивов и конгресса «Лекарство и Жизнь», прошедшего в феврале этого года в г. Киеве.
С точки зрения доказательной медицины клинические исследования (КИ) — это ИНСТРУМЕНТ для получения доказательств эффективности и безопасности методов лечения. В рейтинге надежности и важности источников информации о результатах медицинских вмешательств, рандомизированные клинические контролируемые плацебо испытания занимают первое место (имеют наибольший уровень доверия).
Однако планирование и проведение КИ без применения статистических методов невозможно. Во всем мире этому уделяется особое внимание. Для того чтобы согласовать требования к применению статистических методов при проведении КИ, Международная конференция по гармонизации технических требований к регистрации лекарственных препаратов для человека (ICH) в 1998 г. приняла руководство «Статистические принципы для клинических испытаний». Это руководство было рекомендовано для принятия регуляторными органами стран Европейского Союза, Японии и США. В 2003 г. у нас в стране разработаны, утверждены и опубликованы методические рекомендации «Принципы применения статистических методов при проведении клинических испытаний лекарственных средств», в которых изложены требования к надлежащему применению статистических методов при планировании и проведении КИ. Следует также отметить, что аспекты, связанные с применением статистических методов в КИ, относятся и к другим видам медико-биологических исследований.
Любое исследование необходимо планировать. По поводу важности планирования экспериментальных исследований Лотар Закс писал: «Так как плохо спланированный опыт малоинформативен, что нельзя исправить самой лучшей статистической техникой, то планирование эксперимента становится особо важным составным элементом статистики».
С точки зрения математической статистики при планировании КИ необходимо решить следующие вопросы:
Необходимо отметить, что применение знаний из области биостатистики требуется на следующих этапах планирования и проведения КИ:
Квалифицированное выполнение комплекса работ, связанных с применением методов математической статистики, при проведении КИ не представляется возможным без участия в них биостатистика, так как это ставит под сомнение качество полученной информации. БИОСТАТИСТИК — специалист в области прикладной статистики, имеющий соответствующее образование или прошедший специальный курс обучения, а также имеющий опыт, достаточный для выполнения требований по применению методов статистического анализа при планировании и проведении КИ. Его роль на этапе планирования КИ сводится к следующим моментам:
Кратко остановимся на том, какие бывают дизайны (планы) КИ. По определению, дизайн КИ — это способ, схема его проведения. Данное понятие в области прикладной статистики близко к понятию плана эксперимента. В качестве основных дизайнов КИ можно назвать следующие: параллельный, перекрестный, факторный и последовательный.
Параллельным называется такой дизайн, в котором пациенты рандомизированы на две или более групп, а пациентам одной группы назначают одинаковое лечение. Этот вид дизайна обладает следующими преимуществами: широкий выбор методов анализа и менее сложные допущения, лежащие в его основе. Однако он не лишен и недостатков, к которым можно отнести: большую межгрупповую вариабельность и большой размер выборки. На рисунке 1 приведена общая схема параллельного исследования.
Следующим, часто применяемым дизайном КИ, особенно при испытаниях на биоэквивалентность, на которых мы остановимся позже, является перекрестный дизайн.
Перекрестным называется такой дизайн, в котором каждому пациенту назначают два или более терапевтических курса лечения с различной последовательностью. Основные преимущества этого дизайна: меньший размер выборки (на одних и тех же пациентах испытывают разные виды лечения) и меньшее количество оценок, которые необходимо определить. Из недостатков дизайна следует отметить следующие: эффект наложения (долговременное действие первого вида лечения, которое может повлиять на реакцию от второго) и сопутствующие ему проблемы, а также сложности в проведении анализа при наличии выбывших испытуемых. Общая схема перекрестного исследования приведена на рисунке 2.
Также широко применяется при проведении КИ факторный дизайн, в котором каждому пациенту назначают одну из возможных комбинаций нескольких методов лечения. С точки зрения теории планирования эксперимента он представляет в основном план полного факторного эксперимента. Один из таких планов приведен в таблице. Если возможно и уместно, для экономии ресурсов желательно применять планы дробного факторного эксперимента или планы, которые базируются на равномерно распределенных псевдослучайных числах.
Факторный дизайн в основном применяют в следующих случаях:
Значительную экономию средств получают там, где уместно использовать последовательный дизайн КИ. Последовательным называется такой дизайн, в котором пациенты включаются в исследование по одному, общая численность групп не определена заранее, а его окончание определяется правилом останова. Правило останова (последовательный анализ) — это такое правило, согласно которому после включения нового объекта в исследование и пересчета критериальных значений принимается решение о принятии или отклонении нулевой гипотезы, а также, соответственно, о продолжении или прекращении проводимого исследования.
Преимущества последовательного дизайна заключаются в экономичности, уменьшении размера выборки в среднем в два раза и в возможности заранее определить вероятность ошибок первого и второго рода. Как и остальные дизайны, последовательный дизайн не лишен определенных недостатков. Они, в основном, следующие:
В целом, методы последовательного анализа полезны в следующих случаях: если препарат (лечение) назначают кратковременно (например, однократно), при перекрестных испытаниях (когда отсутствует проблема подбора «пары»).
Следует отметить, что существуют различные разновидности последовательных испытаний:
В общем виде алгоритм последовательного анализа можно представить следующим образом.